15 research outputs found

    Cement nanotubes: on chemical gardens and cement

    Get PDF
    © 2016 Springer Science+Business Media New York“Do cement nanotubes exist?” is a question that has recently been asked. The answer is yes, they do exist. The evidence is in the literature, in tens of papers showing in detail chemical garden-type tubes in cement from the nanoscale upwards that were published in the 1970s and 1980s. Here, we present a nano-review of the literature

    Passive Scalars and Three-Dimensional Liouvillian Maps

    Full text link
    Global aspects of the motion of passive scalars in time-dependent incompressible fluid flows are well described by volume-preserving (Liouvillian) three-dimensional maps. In this paper the possible invariant structures in Liouvillian maps and the two most interesting nearly-integrable cases are investigated. In addition, the fundamental role of invariant lines in organizing the dynamics of this type of system is exposed. Bifurcations involving the destruction of some invariant lines and tubes and the creation of new ones are described in detail.Comment: 18 pages, plain TeX, appears in Physica D, 76, 22-33, 1994. (Lack of figures in original submission corrected in this new upload.

    Geometric phases in discrete dynamical systems

    Full text link
    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Paralleling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent

    Labyrinthine Turing Pattern Formation in the Cerebral Cortex

    Get PDF
    I propose that the labyrinthine patterns of the cortices of mammalian brains may be formed by a Turing instability of interacting axonal guidance species acting together with the mechanical strain imposed by the interconnecting axons.Comment: See home page http://lec.ugr.es/~julya

    Chemobrionics: from self-assembled material architectures to the origin of life

    Get PDF
    Self-organizing precipitation processes, such as chemical gardens forming biomimetic micro- and nanotubular forms, have the potential to show us new fundamental science to explore, quantify, and understand nonequilibrium physicochemical systems, and shed light on the conditions for life's emergence. The physics and chemistry of these phenomena, due to the assembly of material architectures under a flux of ions, and their exploitation in applications, have recently been termed chemobrionics. Advances in understanding in this area require a combination of expertise in physics, chemistry, mathematical modeling, biology, and nanoengineering, as well as in complex systems and nonlinear and materials sciences, giving rise to this new synergistic discipline of chemobrionics

    From chemical gardens to chemobrionics

    Get PDF
    Chemical gardens are perhaps the best example in chemistry of a self-organizing nonequilibrium process that creates complex structures. Many different chemical systems and materials can form these self-assembling structures, which span at least 8 orders of magnitude in size, from nanometers to meters. Key to this marvel is the self-propagation under fluid advection of reaction zones forming semipermeable precipitation membranes that maintain steep concentration gradients, with osmosis and buoyancy as the driving forces for fluid flow. Chemical gardens have been studied from the alchemists onward, but now in the 21st century we are beginning to understand how they can lead us to a new domain of self-organized structures of semipermeable membranes and amorphous as well as polycrystalline solids produced at the interface of chemistry, fluid dynamics, and materials science. We propose to call this emerging field chemobrionics

    Embryonic nodal flow and the dynamics of nodal vesicular parcels

    Get PDF
    We address with fluid-dynamical simulations using direct numerical techniques three important and fundamental questions with respect to fluid flow within the mouse node and left–right development. First, we consider the differences between what is experimentally observed when assessing cilium-induced fluid flow in the mouse node in vitro and what is to be expected in vivo. The distinction is that in vivo, the leftward fluid flow across the mouse node takes place within a closed system and is consequently confined, while this is no longer the case on removing the covering membrane and immersing the embryo in a fluid-filled volume to perform in vitro experiments. Although there is a central leftward flow in both instances, we elucidate some important distinctions about the closed in vivo situation. Second, we model the movement of the newly discovered nodal vesicular parcels (NVPs) across the node and demonstrate that the flow should indeed cause them to accumulate on the left side of the node, as required for symmetry breaking. Third, we discuss the rupture of NVPs. Based on the biophysical properties of these vesicles, we argue that the morphogens they contain are likely not delivered to the surrounding cells by their mechanical rupture either by the cilia or the flow, and rupture must instead be induced by an as yet undiscovered biochemical mechanism
    corecore